水化学环境变异下黏土物理力学特性研究进展

颜荣涛, 吴二林, 徐文强, 曾召田, 苗华, 韦昌富

长江科学院院报 ›› 2014, Vol. 31 ›› Issue (6) : 41-47.

PDF(1814 KB)
PDF(1814 KB)
长江科学院院报 ›› 2014, Vol. 31 ›› Issue (6) : 41-47. DOI: 10.3969/j.issn.1001-5485.2014.06.0092014, 31(06):41-47, 52
岩土工程

水化学环境变异下黏土物理力学特性研究进展

  • 颜荣涛1, 吴二林2, 徐文强3, 曾召田1, 苗华4, 韦昌富1
作者信息 +

Research Progress of the Physical and Mechanical Responsesof Clays to the Variation of Hydrochemical Environment

  • YAN Rong-tao1, WU Er-lin2, XU Wen-qiang3, ZENG Zhao-tian1, MIAO Hua4, WEI Chang-fu1
Author information +
文章历史 +

摘要

水化学环境变异对黏土力学特性具有很重要的影响。分别从物理力学试验分析和理论描述2个方面论述了水化学环境变异对黏土力学特性影响这一方向课题的研究现状。通过分析归纳可知目前对于以蒙脱石含量为主的膨润土的研究较为透彻, 得出了较为一致的规律并且揭示了其影响机理;对于高岭土和一般性黏性土在水化学环境变异下的响应规律揭示不清, 机理阐明不清, 需要进行系统完整的试验研究;同时, 目前的土力学理论框架难以考虑水化学变异的影响, 需要建立新的能考虑化学-力学耦合的土力学理论框架。最后, 总结这一研究方向亟待解决的科学问题和后期的发展前景。

Abstract

Hydrochemical environment variation has significant influence on the mechanical properties of clays. The research status of the influence of hydrochemical environment variation on the mechanical properties of clays is presented from aspects of test analysis and theoretical description of physical mechanics test. Summaries and analysis show that the regularity and mechanism of hydrochemical environmental variation affecting on mechanical properties of bentonite containing mainly smectite have been understood clearly. However, for kaoline and common clays, systematic and complete tests and analysis are needed to reveal the regularities and interaction mechanisms. Besides, a new theory frame in consideration of the interaction between chemistry and mechanics is needed since the current soil mechanics theory is difficult to describe the influence of hydrochemical variation on mechanical properties of clay. Finally, scientific problems need to be solved urgently and the development prospects of this research direction are summarized.

关键词

岩土介质 / 水化学环境 / 化学-力学耦合 / 力学响应

Key words

rock and soil media / hydrochemical environment / chemo-mechanical coupling / mechanical response

引用本文

导出引用
颜荣涛, 吴二林, 徐文强, 曾召田, 苗华, 韦昌富. 水化学环境变异下黏土物理力学特性研究进展[J]. 长江科学院院报. 2014, 31(6): 41-47 https://doi.org/10.3969/j.issn.1001-5485.2014.06.0092014, 31(06):41-47, 52
YAN Rong-tao, WU Er-lin, XU Wen-qiang, ZENG Zhao-tian, MIAO Hua, WEI Chang-fu. Research Progress of the Physical and Mechanical Responsesof Clays to the Variation of Hydrochemical Environment[J]. Journal of Changjiang River Scientific Research Institute. 2014, 31(6): 41-47 https://doi.org/10.3969/j.issn.1001-5485.2014.06.0092014, 31(06):41-47, 52
中图分类号: TU431   

参考文献

[1] WINTERKORN H F, MOORMAN R B. A Study of Changes in Physical Properties of Putnam Soil Induced by Ionic Substitution[C]∥Proceedings of the Twenty-First Annual Meeting of the Highway Research Board Held at the Johns Hopkins University, Baltimore, Maryland, December 2-5, 1941: 415-434.
[2] SUDHAKAR M R, SRIDHARAN A. Mechanism Controlling the Volume Change Behavior of Kaolinite[J]. Clays and Clay Minerals, 1985, 33(4): 323-328.
[3] 汪 民.饱水黏性土中黏粒与水相互作用的初步探讨[J].水文地质工程地质, 1987, 3(6):1-12. (WANG Min. The Interaction between Water and Clay Particles in Saturated Clayey Soils[J]. Hydrogeology and Engineering Geology, 1987, 3(6):1-12.(in Chinese))
[4] 汤连生, 王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展, 1999, 14(5):433-439.(TANG Lian-sheng, WANG Si-jing. Progress in the Study on Mechanical Effect of the Chemical Action of Water-rock on Deformation and Failure of Rocks[J]. Advance in Earth Sciences, 1999, 14(5):433-439.(in Chinese))
[5] RISNES R, FLAAGENG O. Mechanical Properties of Chalk with Emphasis on Chalk-fluid Interactions, Micromechanical Aspects[J]. Oil & Gas Science and Technology-Revue de l’IFP, 1999, 54(6):751-758.
[6] HOMAND S, SHAO J F. Mechanical Behaviour of a Porous Chalk and Water/Chalk Interaction, Part 2: Numerical Modelling[J]. Oil & Gas Science and Technology-Revue de l’IFP, 2000, 55(6): 599-609.
[7] HOMAND S, SHAO J F. Mechanical Behaviour of a Porous Chalk andWater/Chalk Interaction, Part 1: Experimental Study[J]. Oil & Gas Science and Technology-Revue de l’IFP, 2000, 55(6): 591-598.
[8] 毕仁能, 项 伟, 郭 义, 等. 库岸滑坡黏性土与河水物理化学作用试验研究[J]. 长江科学院院报, 2011, 28(7):28-31.(BI Ren-neng, XIANG Wei, GUO Yi, et al. Physical and Chemical Reaction between River Water and Clayey Soil from Reservoir Landslide[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(7): 28-31.(in Chinese))
[9] BOLT G H. Physico-chemical Analysis of the Compressibility of Pure Clays[J]. Geotechnique, 1956, 6(2): 86-93.
[10]DI MAIO C, FENELLI G B. Residual Strength of Kaolin and Bentonite: the Influence of Their Constituent Pore Fluid[J]. Geotechnique, 1994, 44(2): 217-226.
[11]DI MAIO C. Exposure of Bentonite to Salt Solution: Osmotic and Mechanical Effects[J]. Geotechnique, 1996, 46(4): 695-707.
[12]ANSON R W W, HAWKINS A B. The Effect of Calcium Ions in Pore Water on the Residual Shear Strength of Kaolinite and Sodium Montmorillonite[J]. Géotechnique, 1998, 48(6):787-800.
[13]吴 恒, 张信贵, 韩立华. 水化学场变异对土体性质的影响[J]. 广西大学学报(自然科学版), 1999, 24(2): 85-88.(WU Heng, ZHANG Xin-gui, HAN Li-hua. The Change of Groundwater Chemical Field Affect Properties of Soilmass[J]. Journal of Guangxi University, 1999, 24(2):85-88. (in Chinese))
[14]汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4): 104-109. (TANG Lian-sheng. Mechanical Effect of Chemical Action of Water on Soil and Analysis on Its Mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4): 104-109. (in Chinese))
[15]CALVELLO M, LASCO M, VASSALLO R, et al. Compressibility and Residual Shear Strength of Smectitic Clays: Influence of Pore Aqueous Solutions and Organic Solvents[J]. Italian Geotechnical Journal, 2005, 34(1): 34-46.
[16]王 洋, 汤连生, 高全臣, 等.水土作用模式对残积红黏土力学性质的影响分析[J]. 中山大学学报(自然科学版), 2007, 46(1): 129-132. (WANG Yang, TANG Lian-sheng, GAO Quan-cheng, et al. Effects of Water-Soil Interaction on Mechanical Strength of Residual Red Clay[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(1): 129-132. (in Chinese))
[17]朱春鹏, 刘汉龙, 张晓璐. 酸碱污染土压缩特性的室内试验研究[J]. 岩土工程学报, 2008, 30(10): 1146- 1152. (ZHU Chun-peng, LIU Han-long, ZHANG Xiao-lu. Laboratory Tests on Compression Characteristics of Soil Polluted by Acid and Alkali[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1146-1152. (in Chinese))
[18]WAHID A S, GAJO A, DI MAGGIO R. Chemo-mechanical Effects in Kaolinite Part 1: Prepared Samples[J]. Geotechnique, 2011, 61(6): 439-447.
[19]WAHID A S, GAJO A, DI MAGGIO R. Chemo-mechanical Effects in Kaolinite Part 2: Exposed Samples and Chemical and Phase Analyses[J]. Geotechnique, 2011, 61(6): 449-457.
[20]李法虎. 土壤物理化学[M]. 北京:化学工业出版社, 2006. (LI Fa-hu. Physical Chemistry of Soil[M]. Beijing: Chemical Industry Press, 2006. (in Chinese))
[21]PETRO R J, ROWE P K. Selected Factors Influencing GCL Hydraulic Conductivity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(8): 683-695.
[22]LEE J M, SHACKELFORD C D. Impact of Bentonite Quality on Hydraulic Conductivity of Geosynthetic Clay Liners[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131: 64-77.
[23]ARASA S, YETIMOGLU T. Effect of Inorganic Salt Solutions on the Consistency Limits of Two Clays[J]. Turkish Journal of Engineering and Environmental Sciences, 2008, 32:107-115.
[24]SCHMITZ R M, SCHROODER C R. Chemo-mechanical Interactions in Clay: A Correlation between Clay Mineralogy and Atterberg Limits[J]. Applied Clay Science, 2004, 26: 351-358.
[25]DI MAIO C, SANTOLI L, SCHIAVONE P. Volume Change Behaviour of Clays: the Influence of Mineral Composition, Pore Fluid Composition and Stress State[J]. Mechanics of Materials, 2004, 36(5/6): 435-451.
[26]MOORE R. The Chemical and Mineralogical Controls upon the Residual Strength of Pure and Natural Clays[J]. Géotechnique, 1991, 41(1): 18.
[27]汤连生. 略论岩土化学力学 [J]. 中山大学学报(自然科学版), 2002, 41(3): 86-90.(TANG Lian-sheng. On Chemical-mechanics for Rock and Soil [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(3):86-90. (in Chinese) )
[28]GAJO A, MAINES M. Mechanical Effects of Aqueous Solutions of Inorganic Acids and Bases on a Natural Active Clay[J]. Geotechnique, 2007, 57(8): 687-699.
[29]FRANKOVSKA J, ANDREJKOVICOVA S, JANOTKA I. Effect of NaCl on Hydraulic Properties of Bentonite and Bentonite-Palygorskite Mixture[J]. Geosynthetics International, 2010, 17(4): 250-259.
[30]PARK J, VIPULANANDAN C, KIM J W, et al. Effects of Surfactants and Electrolyte Solutions on the Properties of Soil[J]. Environmental Geology, 2006, 49(7): 13.
[31]SIVAPULLAIAH P V, MANJU M. Kaolinite-Alkali Interaction and Effects on Basic Properties[J]. Geotechnical and Geological Engineering, 2005, 23(5): 4.
[32]ANANDARAJAH A, ZHAO D. Triaxial Behavior of Kaolinite in Different Pore Fluids[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(2): 9.
[33] 刘汉龙, 朱春鹏, 张晓璐. 酸碱污染土基本物理性质的室内测试研究[J]. 岩土工程学报, 2008, 30(8): 1213-1217. (LIU Han-long, ZHU Chun-peng, ZHANG Xiao-lu. Fundamental Physical Properties of Soil Polluted by Acid and Alkali in Laboratory[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(8):1213-1217. (in Chinese))
[34]朱春鹏, 刘汉龙, 沈 扬. 酸碱污染土强度特性的室内试验研究[J]. 岩土工程学报, 2011, 33(7): 1477-1483. (ZHU Chun-peng, LIU Han-long, SHEN Yang. Laboratory Tests on Shear Strength Properties of Soil Polluted by Acid and Alkali[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1477-1483. (in Chinese))
[35]朱春鹏, 刘汉龙, 沈 扬. 酸碱污染软黏土变形性质的三轴试验研究[J].岩土工程学报, 2009, 31(10):1559-1563. (ZHU Chun-peng, LIU Han-long, SHEN Yang. Triaxial Tests on Deformation Characteristics of Soft Soils Polluted by Acid and Alkali[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1559-1563. (in Chinese))
[36]SHARIATMADARI N, SALAMI M, FARD M K. Effect of Inorganic Salt Solutions on Some Geotechnical Properties of Soil-bentonite Mixtures as Barriers[J]. International Journal of Civil Engineering, 2011, 9(2): 103-110.
[37]GRATCHEV I, TOWHATA I. Compressibility of Natural Soils Subjected to Long-term Acidic Contamination[J]. Environmental Earth Sciences, 2011, 64(1): 193-200.
[38]DENG Y F, CUI Y J, TANG A M, et al. Investigating the Pore-water Chemistry Effects on the Volume Change Behaviour of Boom Clay[J]. Physics and Chemistry of the Earth, 2011, 36(17/18): 1905-1912.
[39]OLGUN M, YILDIZ M. Influence of Acetic Acid on Structural Change and Shear Strength of Clays[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering, 2012, 36(C1): 25-38.
[40]LORET B, HUECKEL T, GAJO A. Chemo-mechanical Coupling in Saturated Porous Media: Elastic-plastic Behaviour of Homoionic Expansive Clays[J]. International Journal of Solids and Structures, 2002, 39(10): 2773-2806.
[41]GAJO A, LORET B, HUECKEL T. Electro-chemo-mechanical Couplings in Saturated Porous Media: Elastic-plastic Behaviour of Heteroionic Expansive Clays[J]. International Journal of Solids and Structures, 2002, 39(16): 4327-4362.
[42]GAJO A, LORET B. The Mechanics of Active Clays Circulated by Salts, Acids and Bases[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(8): 1762-1801.
[43]GONALV S J, ROUSSEAU-GUEUTIN J, DE MARSILY G, et al. What is the Significance of Pore Pressure in a Saturated Shale Layer[J]. Water Resources Research, 2010, 46(4), DOI: 10.1029/2009WR008090.
[44]MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. US: John Wiley & Sons, 2005: 173-194.
[45] WEI C F, FENG X T. A Theoretical Framework for Modeling the Chemo-mechanical Behaviour of Porous Media with Multiphases and Multispecies[C]∥Proceedings of Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, Beijing, China, August 19-24, 2012.

基金

国家自然科学基金项目(51309055);广西自然科学基金重点项目(2012GXNSFGA060001);广西岩土力学与工程重点实验项目(12-A-01-032)

PDF(1814 KB)

Accesses

Citation

Detail

段落导航
相关文章

/